Polarized/depolarized Rayleigh Scattering for Determining Fuel Concentrations in Flames

نویسندگان

  • JOSEPH FIELDING
  • JONATHAN H. FRANK
  • SEBASTIAN A. KAISER
  • MITCHELL D. SMOOKE
  • MARSHALL B. LONG
چکیده

Rayleigh scattering has been shown to be a useful diagnostic technique for two-dimensional imaging studies of reacting and non-reacting flows. For example, by combining Rayleigh scattering with a simultaneous measurement of the fuel concentration (e.g., using Raman scattering), mixture fraction and temperature can be determined in flames. In this work, it is demonstrated that the fuel concentration can be obtained by measuring the polarized and depolarized components of the Rayleigh signal and taking their difference or a suitable linear combination. While the depolarized Rayleigh signal is smaller than the polarized signal by a factor of 100, this is still a factor of 10 larger than the Raman scattering. Application of the technique requires that one of the primary constituents of the fuel stream possess a depolarization ratio sufficiently different from that of the oxidizer. Methane is a convenient candidate as it has no measurable depolarization. Results are shown for methane flames diluted by argon as well as air.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reaction-rate, Mixture-fraction, and Temperature Imaging in Turbulent Methane/air Jet Flames

Instantaneous two-dimensional measurements of reaction rate, mixture fraction, and temperature are demonstrated in turbulent partially premixed methane/air jet flames. The forward reaction rate of the reaction CO OH ⇒ CO2 H is measured by simultaneous OH laser-induced fluorescence (LIF) and two-photon CO LIF. The product of the two LIF signals is shown to be proportional to the reaction rate. T...

متن کامل

Multiscalar imaging in partially premixed jet flames with argon dilution

Simultaneous imaging of depolarized and polarized Rayleigh scattering combined with OH-LIF and two-photon CO-LIF provides two-dimensional measurements of mixture fraction, temperature, scalar dissipation rate, and the forward reaction rate of the reaction CO+ OH = CO2 + H in turbulent partially premixed flames. The concept of the three-scalar technique for determining the mixture fraction using...

متن کامل

Raman/Rayleigh scattering and CO-LIF measurements in laminar and turbulent jet flames of dimethyl ether

To reduce the impact of combustion of fossil fuels on air quality and climate change, dimethyl ether (DME) is a promising alternative diesel fuel candidate. Technical combustion processes, including formation of pollutants, are influenced by turbulence–chemistry interaction. Therefore, accurate prediction by computational combustion models of combustion systems burning DME must account for mult...

متن کامل

Soot formation and oxidation in oscillating methane-air diffusion flames at elevated pressure.

Comparisons with respect to the sooting tendency are made between stationary diffusion flames and diffusion flames with pulsations induced by oscillating fuel flow. Time-resolved measurements of the soot particle properties in the flames are obtained by combining Rayleigh-scattering, laser-induced incandescence, and extinction measurements into the RAYLIX method. Furthermore, flame luminosity a...

متن کامل

Rayleigh scattering from pivalic acid

2014 Both the polarized and depolarized spectra of Rayleigh scattering from pivalic acid have been measured with high precision. The relaxation time for molecular reorientation and the energy of activation are deduced directly from these measurements for both the liquid and plastic phases of the crystal. REVUE DE PHYSIQUE APPLIQUÉE TOME 9, MARS 1974, PAGE Classification Physics Abstracts 8.810

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003